Ai工具导航
登录
Ai路线导航
malteos/scincl

malteos/scincl

分类
Ai工具库①
收录时间
2025-10-05 21:52:50
累计访问
6
标签
Feature Extraction
链接直达手机访问
malteos/scincl

网站介绍


SciNCL

SciNCL is a pre-trained BERT language model to generate document-level embeddings of research papers.
It uses the citation graph neighborhood to generate samples for contrastive learning.
Prior to the contrastive training, the model is initialized with weights from scibert-scivocab-uncased.
The underlying citation embeddings are trained on the S2ORC citation graph.
Paper: Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings (EMNLP 2022 paper).
Code: https://github.com/malteos/scincl
PubMedNCL: Working with biomedical papers? Try PubMedNCL.


How to use the pretrained model

from transformers import AutoTokenizer, AutoModel
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('malteos/scincl')
model = AutoModel.from_pretrained('malteos/scincl')
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
# concatenate title and abstract with [SEP] token
title_abs = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512)
# inference
result = model(**inputs)
# take the first token ([CLS] token) in the batch as the embedding
embeddings = result.last_hidden_state[:, 0, :]


Triplet Mining Parameters

Setting Value
seed 4
triples_per_query 5
easy_positives_count 5
easy_positives_strategy 5
easy_positives_k 20-25
easy_negatives_count 3
easy_negatives_strategy random_without_knn
hard_negatives_count 2
hard_negatives_strategy knn
hard_negatives_k 3998-4000
特别声明

本站Ai工具导航提供的“malteos/scincl”来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由“Ai工具导航”实际控制,在“2025-10-05 21:52:50”收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,“Ai工具导航”不承担任何责任。

流量统计

  • 7天
  • 30天
  • 90天
  • 365天
页面浏览量
独立访客数
链接点击量

猜你喜欢

关注我们
\"二维码\"

扫一扫二维码关注我们的微信公众号

网址推荐
热门标签
图片名称